December 16, 2024

Introduction to Rotation Matrices in Robotics

In this post, we explain:

  1. How to derive rotation matrices
  2. How to transform vectors between two rotated coordinate systems.

A YouTube video accompanying this post is given below.

Rotation matrices are important for modeling robotic systems and for solving a number of problems in robotics.

Consider Fig. 1 below.

Two coordinate systems rotated for the angle of \theta around the z_{0} axis.

We have two coordinate systems. The coordinate system X_{0}Y_{0}Z_{0} is fixed. This coordinate system is called the inertial or reference coordinate system. Note that in robotics, coordinate systems are also called frames. The coordinate system X_{1}Y_{1}Z_{1} is rotated for the angle \theta with respect to the coordinate system X_{1}Y_{1}Z_{1} around the z_{0} axis. The vectors i_{0}, j_{0}, and k_{0} are the unit vectors of the coordinate axes X_{0}, Y_{0}, and Z_{0}. On the other hand, the vectors i_{1}, j_{1}, and k_{1} are the unit vectors of the coordinate axes X_{1}, Y_{1}, and Z_{1}.

Consider the vector \mathbf{p} that rotates together with the frame X_{1}Y_{1}Z_{1} and that is fixed with respect to this frame. This vector is shown in the figure below.

Vector p rotating together with the frame X_{1}Y_{1}Z_{1}.

Problem: Knowing the coordinates of the vector p in the frame X_{1}Y_{1}Z_{1}, and the angle of rotation \theta, represent this vector in the frame X_{0},Y_{0}, Z_{0}.

The representation of the vector \mathbf{p} in the frame X_{1}Y_{1}Z_{1} is

(1)   \begin{align*}\leftindex^{1}{\mathbf{p}}= p_{x_{1}} \mathbf{i}_{1}+  p_{y_{1}} \mathbf{j}_{1} +  p_{z_{1}} \mathbf{k}_{1} \end{align*}

where the notation \leftindex^{1}{\mathbf{p}} stands for the representation of the vector \mathbf{p} in the frame 1. And the scalars p_{x_{1}}, p_{y_{1}}, and p_{z_{1}} are the projections. We want to compute this representation of the vector \mathbf{p} in the frame X_{0}Y_{0}Z_{0}

(2)   \begin{align*}\leftindex^{0}{\mathbf{p}}= p_{x_{0}} \mathbf{i}_{0}+p_{y_{0}}\mathbf{j}_{0}+p_{z_{0}}\mathbf{k}_{0}\end{align*}

From (2) and (1), we have

(3)   \begin{align*} p_{x_{0}} =  \leftindex^{1}{\mathbf{p}} \cdot  \mathbf{i}_{0} =   p_{x_{1}} \mathbf{i}_{1}   \cdot  \mathbf{i}_{0} + p_{y_{1}} \mathbf{j}_{1}\cdot \mathbf{i}_{0}  +  p_{z_{1}} \mathbf{k}_{1}\cdot \mathbf{i}_{0}  \\  p_{y_{0}} =  \leftindex^{1}{\mathbf{p}} \cdot  \mathbf{j}_{0} =   p_{x_{1}} \mathbf{i}_{1}   \cdot  \mathbf{j}_{0} + p_{y_{1}} \mathbf{j}_{1}\cdot \mathbf{j}_{0}  +  p_{z_{1}} \mathbf{k}_{1}\cdot \mathbf{j}_{0}  \\ p_{z_{0}} =  \leftindex^{1}{\mathbf{p}} \cdot  \mathbf{k}_{0} =   p_{x_{1}} \mathbf{i}_{1}   \cdot  \mathbf{k}_{0} + p_{y_{1}} \mathbf{j}_{1}\cdot \mathbf{k}_{0}  +  p_{z_{1}} \mathbf{k}_{1}\cdot \mathbf{k}_{0}  \end{align*}

where the notation \mathbf{i}_{1} \cdot  \mathbf{i}_{0} is used to denote the scalar product between vectors. The last equation can be represented in the vector form

(4)   \begin{align*}\underbrace{\begin{bmatrix}   p_{x_{0}}  \\  p_{y_{0}} \\  p_{z_{0}}    \end{bmatrix}}_{ \leftindex^{0}{\mathbf{p}} } = \underbrace{\begin{bmatrix}  \mathbf{i}_{1}   \cdot  \mathbf{i}_{0}  &  \mathbf{j}_{1}   \cdot  \mathbf{i}_{0}   &  \mathbf{k}_{1}   \cdot  \mathbf{i}_{0}  \\   \mathbf{i}_{1}   \cdot  \mathbf{j}_{0}  &  \mathbf{j}_{1}   \cdot  \mathbf{j}_{0}   &  \mathbf{k}_{1}   \cdot  \mathbf{j}_{0}   \\   \mathbf{i}_{1}   \cdot  \mathbf{k}_{0}  &  \mathbf{j}_{1}   \cdot  \mathbf{k}_{0}   &  \mathbf{k}_{1}   \cdot  \mathbf{k}_{0}  \end{bmatrix}}_{\leftindex^{0}_{1}R} \underbrace{\begin{bmatrix}     p_{x_{1}}  \\  p_{y_{1}} \\  p_{z_{1}}  \end{bmatrix}}_{ \leftindex^{1}{\mathbf{p}} } \end{align*}

where

(5)   \begin{align*} \leftindex^{0}_{1}{R} =  \begin{bmatrix}  \mathbf{i}_{1}   \cdot  \mathbf{i}_{0}  &  \mathbf{j}_{1}   \cdot  \mathbf{i}_{0}   &  \mathbf{k}_{1}   \cdot  \mathbf{i}_{0}  \\   \mathbf{i}_{1}   \cdot  \mathbf{j}_{0}  &  \mathbf{j}_{1}   \cdot  \mathbf{j}_{0}   &  \mathbf{k}_{1}   \cdot  \mathbf{j}_{0}   \\   \mathbf{i}_{1}   \cdot  \mathbf{k}_{0}  &  \mathbf{j}_{1}   \cdot  \mathbf{k}_{0}   &  \mathbf{k}_{1}   \cdot  \mathbf{k}_{0}  \end{bmatrix} \end{align*}

is the rotation matrix. The notation \leftindex^{0}_{1}{R} denotes the transformation from the frame 1 (subscript) to the frame 0 (superscript). The first column of the rotation matrix is the projection of the vector \mathbf{i}_{1} onto the axes of the frame X_{0}Y_{0}Z_{0}. The second column of the rotation matrix is the projection of the vector \mathbf{j}_{1} onto the axes of the frame X_{0}Y_{0}Z_{0}. The third column of the rotation matrix is the projection of the vector \mathbf{k}_{1} onto the axes of the frame X_{0}Y_{0}Z_{0}.

Now, consider Fig.1 again. Since \mathbf{i}_{1} and \mathbf{i}_{0} are the unit vectors, we have \mathbf{i}_{1} \cdot  \mathbf{i}_{0} = | \mathbf{i}_{1} | | \mathbf{i}_{0} |cos(\theta) = 1\cdot 1 \cdot cos(\theta) =cos(\theta). That is, \mathbf{i}_{1} \cdot  \mathbf{i}_{0} is the projection of the vector \mathbf{i}_{1} onto the vector \mathbf{i}_{0}, and \theta is the angle between these two vectors. By using this method, we can populate the rotation matrix as follows:

(6)   \begin{align*} \leftindex^{0}_{1}{R} =  \begin{bmatrix}  cos(\theta)  & -sin(\theta)  &  0  \\  sin(\theta)   &   cos(\theta) & 0 \\  0 & 0    & 1 \end{bmatrix} \end{align*}

Rotation matrices have the following nice property:

(7)   \begin{align*} \leftindex^{0}_{1}{R} ^{-1} =   \leftindex^{0}_{1}{R}^{T}\end{align*}

That is, they are orthonormal. The inverse of \leftindex^{0}_{1}{R} is actually a transformation from the frame 0 to the frame 1, to see this, multiply the equation (4) by \leftindex^{0}_{1}{R} ^{-1}:

(8)   \begin{align*}  \leftindex^{0}_{1}{R} ^{-1} \cdot \leftindex^{0}{\mathbf{p}} =  \leftindex^{1}{\mathbf{p}}   \end{align*}

That is, \leftindex^{0}_{1}{R} ^{-1} =   \leftindex^{1}_{0}{R}.